Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds

نویسندگان

  • HAINING FAN
  • XIAOCHUN LIU
چکیده

In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents

This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...

متن کامل

Systems of Elliptic Equations Involving Multiple Inverse–square Potentials and Critical Exponents

In this paper, a system of elliptic equations is investigated, which involves multiple critical Sobolev exponents and singular points. The best Sobelev constant related to the system is studied, which is verified to be independent of the location of singular points. By a variant of the concentration compactness principle and the mountain-pass argument, the existence of positive solutions to the...

متن کامل

On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function

In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constan...

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Positive solutions of singular elliptic systems with multiple parameters and Caffarelli-Kohn-Nirenberg exponents

This paper is concerned with the existence of positive solutions for a class of quasilinear singular elliptic systems with Dirichlet boundary condition. By studying the competition between theCaffarelli–Kohn–Nirenberg exponents, the sign-changing potentials and the nonlinear terms, we establish an interval on the range of multiple parameters over which solutions exist in an appropriate weighted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013